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Abstract

Let RB;"(](IR”) be the radial subspace of the Besov space B;‘q(R”). We prove the

independence of the asymptotic behavior of the entropy numbers
ex(id : RB® (R")—RB (R"))

Poq0 JARU)
from the difference so —s1 as long as the embedding itself RBY (R")<RB)  (R") is
compact. In fact, we shall show that
1 1
ex(id 1 RBY , (R")r>RB) (")) ~k " 0.
This is in a certain contrast to earlier results on entropy numbers in the context of Besov
spaces B, ,(€2) on bounded domains Q.
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1. Introduction

The aim of the paper is to investigate the quality of compact embeddings between
the radial subspaces of Besov and Triebel-Lizorkin spaces on the Euclidean n-space
R". We do not have in mind specific applications but rather want to direct the
attention to a new phenomenon. Let B) () be the Besov space defined on the

bounded domain 2 in R". Then the embedding

B;% 610( )C_)B;?ll l]l( ) (sl <50, P0 <Pl)
is compact if and only if 6 =so —s; — (n/po —n/p;)>0. One can measure the
quality of embeddings in terms of the asymptotic behavior of the corresponding
entropy numbers. In this situation it is known that

S0 =581

(ld B;% qo( ) B;11 1 (Q)) NkiT’
cf. [7] (here a ~ b indicates a two-sided estimate). The parameters py and p, disappear
on the right- hand side, only the difference so — s matters. In case of the radial
subspaces RB, (R") of the Besov spaces B, (R") we meet the converse situation.
Again the embeddmg

RBy, ,(R") < RB, , (R)
is compact if and only if §>0. But now the entropy numbers behave completely
different. We shall prove

1

ex(id 1 RBY  (R") > RB3  (R")~k "o 20,
Here the influence of sy and s, disappears and only the difference in 1/py and 1/p;
counts.

Symmetry as well as weights can be used to generate compactness of embeddings
on R". That has been known since the seventies, cf. e.g. [6,18] in case of first-order
Sobolev spaces. In the general framework of Besov and Triebel-Lizorkin spaces a
detailed account has been made in our previous paper [26].

The asymptotic behavior of entropy numbers of Sobolev embeddings is known in
some situations, in particular for

® spaces on bounded domains;
® weighted spaces on R” (partial results).

As we shall see later entropy numbers of Sobolev embeddings of weighted spaces on
R" are closely related to our problem here. Roughly speaking, we split the radial
subspace of the Besov space into two parts. One part, denoted by RB: (R” [1, o0)),
contains radial distributions which have support in the set {x: |x|> l} and the other
part, denoted by RB, (R", [0,2]) consists of radial distributions having support in
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{x: |x|<2}. For a radial distribution /" all information is contained in its trace tr* f
on R;. This phrase can be made rigorous if the distribution is sufficiently regular.
Let w,(x) = (14 |x[*)*,2eR. It turns out that the mapping tr* becomes an
isomorphism of
RB;,q(R", [1,00)) onto B;,q([RJr,w(,,_]), [1, 0)),
r

where the latter space is a weighted Besov space defined on R, cf. Section 2.3 for
further details.

Now, consider the pair RBy  (R") and RB) , (R"), where po<pi and s —
s1=n(1/py — 1/p1). In order to establish the estimates from below we employ the
above remarks and reduce them to the study of the estimates from below with
respect to the pair

By (R w1, [1,00)) and B) (R Wiy, [1, 00)).
Po Pi

To prove the upper estimates, we will use a further tool-the radial ¢-transform of
Epperson and Frazier. This transform will allow us to reduce the upper estimate for
the entropy numbers to upper estimates of entropy numbers of certain sequence
spaces in a very convenient way. Estimates of entropy numbers of the associated
sequence spaces will be the main subject in Section 3. In the final section we prove
our main result announced above and formulate also a parallel result for the
Lizorkin—Triebel scale.

The described situation with po<p; and so — 51 =n(1/po — 1/p1) is very similar to
that in the weighted case on the interval [1, c0). Assuming the dominance of the
behavior near infinity over the behavior around the origin, our result could have
been deduced from the two-sided estimate

er(id 1 BY (R, wi), [1, 0)) > B (Ry iy, [1, 0)) ~k "0 0.

D090 JARUA
Po Pi

However, restricted to the situation of interest here, the upper estimate in this
asymptotic relation is still open [13, Conjecture 2.5], cf. also [14, Theorem 4.2] or [7,
Theorem 4.3.2], and we could not use it for an alternative approach.

2. Relations between sequence and function spaces

Our main aim consists in a characterization of the asymptotic behavior of the
entropy numbers of the Sobolev embeddings. For the corresponding estimates the
following tools are essential:

(a) the entropy numbers of embeddings of certain weighted sequence spaces;
(b) some identifications between function spaces and sequence spaces.

The described method is standard in that field and employed in many places, cf. e.g.
the monographs [7,29] or most recently the papers [5,17]. Here we will work with the
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following weighted sequence spaces:

1@ ) = {100 11102 L)
1/q

© / o q/p
=Y <Z 2P (1 + k)“|sj;k|”> < o, (1)

7=0 \k=0

where >0 is a real number, >0 and 1<p,¢< oo (with the usual modification if
p= o0 or g= o0). If 6 = 0 we will write /,(¢,.,,,). We postpone the estimates of the
entropy numbers for the weighted sequence spaces to Section 3 and start with a
description of some mappings which connect the function spaces and the sequence
spaces.

2.1. The radial @-transform

We recall the Epperson—Frazier construction of the radial ¢-transform, cf. [8]. We
will do this in some detail because we are going to use it with a different
normalization.

Let ¢, ye¥(R") be radial functions such that supp ¢,y c{¢: 1<lél<1},
PO, [ (&)|=e>0 if 3<[é <3 Let @, e (R") be radial functions satisfying
supp @, P < {¢&: |¢| <1}, |(&)],|P(¢)|=c>0 if |é[<2. We may assume that the
above functions satisfy the following identity:

PRIEWQRTE) =1 for all EeR,
1

(&) P(E) +

0
J=

cf. [8]. We put ¢,(x) = 2"¢(2x) and y,(x) = 2"Y(2x), j = 1,2, .... Let do, denote
the usual surface measure on the sphere of radius ¢ (not normalized) and let w,_;
denote the measure of the unit sphere. Then we have [ do, = w,_ 1. Let J, denote
the Bessel function of order v. As the definition we take

(x/2)" 1 =12 ; . 1
_— 1 —+¢ Ede o if — =
Val(v+ 1) S =) e ==z

2\ 2 1
<) COS X if v=—.
X 2

Let p, <u,,<--- be the positive zeros of J,. For k = 1,2, ... we put

Jo(x) =

1—n

LN
Pl () =2k

2j(n=2)+1 12
X 'un JZ (ﬂ k)w | ((pj*dGZ’/u\,_k)(x)v ] = 172737 ceey
v,k v+1 R, n—
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ey p—1
v () =27 Tk

2j(1172) 1 I/Z(l/j ) )( ) | .
X ixdoy—j, X)), J=1,2,3,...,
‘u:f,k']tgﬁ—l (uv,k)wn 1 J T

1/2

(s.p) 1-n b
v (x = Dxdo 0 )\ X)s
" ) ('u"kJ +](iu1 k)wn 1) ( k k)( )

1/2
. n-1 2
l//(é’p)x =k 2 Yxdo,,,)(x).
L VW T o B

Observe, if the differential dimensions s - and s; — o coincide then (p(so ) =

QD(SJl 1) and similar for v.

Agreement: From now on we fix v by v =252 and drop the influence of v in
notations (as we already did in case of (pj 7 ) and x//j(._slf ).

The functions ¢ “7) and lp *7) are radial. Moreover, any radial f€.%(R") can be
decomposed into

fZZU% v

(convergence in &'(R")), cf. [8]. We will not give a definition of the Besov spaces
here. The reader who is not familiar with the standard properties is referred to
[11,20,28,29].

Theorem 1 (Epperson—Frazier). Let se R and 1<p,q< co. The operators
N RB;‘q([R") =2 4(lpn-1)

and
Tsp):lg({pn—1)—> RB, ,(R")
defined by
S(x,p) (f) = (<fa (Pj 1;111 >)/k7 (2)
(7)) Z Z V/kW,kH (3)
j=0 k=0

are bounded. Moreover, the operator T is a retraction, i.e. T - S = id.

Proof. In [8] Epperson and Frazier worked with a different normalization. Put

o0 () g0 AlstEy sl
Pik = x@ji s Ap=2""21k2
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and
(5+5-5) 1 152
l///k*}/k‘/jj ) i}’k:2/Y2pk2'
Let A denote the annulus (a ball if k£ = 0),
{xeR" 27 <|X[<27we ), o =0

The characteristic functions of these sets are denoted by %'4,. Following [8] we
introduce the following sequence spaces /1, , by means of the norm

o a\ /4
||<sj,k>|h;,q|=<z ) .

J=0

Slsjall djg |2 4,0 | Ly(RY)

k=0
Then the operators
S:RB) (R~ and T:h  —RB; (R")

defined by
SN(f) = (<fa (bj,k > )j7k+1a

w o
Sj k E § Sj,k‘ﬁj,kﬂ

o0
j=0 k=0

are bounded. Moreover, the operator 7 is a retraction, i.e. ToS =id. Using
McMahon’s asymptotic expansion jy = i, = (k +3 — )+ O(F), cf. [30, pp. 505-
506] one derives that

|Ajgel ~ 27 k"

In consequence
- is 1 n
> 2lsiallAjret] 22 a0, | Ly (RY)
0 1/p
JPS V4 1-2
~ DD Pl 1A |2
< 0
- 1/p
D n—1
~<z a1 40 ) .
k=0

The assertion of Theorem 1 follows from these equivalences. [

MS

1/p
/) Nl (14 k)20 (1 4 k)™= )

=~
Il
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Corollary 1. Let po<pi and sy —2t>s1 — 1~ Let d=s0— i +n(p—lfpl0) and §=
s1+ n(— - —) Then
Sep) = Stwp) =S, Tep) = Tsipy =T (4)
and the following diagram is commutative:
RB;g,q(Rn) i> gq(gj‘sgpo,n—l)
id | Lid
T

RB;i,q(Rn) — eq(epl,n—l)

Proof. The identities in (4) follow from the definition of the functions q)(s”’ and l//(s 2

and the definition of the operators. So, for 5o = § the commutivity of the dlagram
follows from Theorem 1 and B (R")< B}  (R"). Let 59>5. For j>0 we have

o =200 and gt = 2Py
Let feRBy (R"). Then
S(F) = (> o2 D) = Q7P 0l >).

By Theorem 1, the operator S is a bounded operator from the space RB;%yq([R{”) into
£ 4({pyn—1). Moreover, the operator

Tyl ppr) = RB, ,(R")

defined by
o0 o0 o0 o0
$.po) _ S1,P1
VJk E : V]kl//ijrl - E : § :ij‘p]kH
=0 k=0 =0 k=0

is a bounded retraction. So we get the above commutative diagram. [

Remark 1. Corollary 1 will be used to derive estimates of the entropy numbers from
above. Observe that the functions t//}f,;p ) are not linearly independent. So different

sequences may lead to the same distribution in (2). That makes clear that Theorem 1
cannot be used for the estimates from below.

2.2. Atomic decomposition of weighted spaces

This subsection has a preparatory character. Consider the L,-case, then it becomes
obvious that spaces of radial functions are related to weighted spaces defined on the
positive half-line. To prepare a similar statement for Besov spaces we investigate first
atomic decompositions for weighted Besov spaces.
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We recall the definition of an atom, cf. [11,27] or [29]. For an open set Q and r>0

we put rQ = {xeR": dist(x, Q)<r}. Observe that Q is always a subset of rQ
whatever r is.

Definition 1. Let se Rand let 1<p<oo. Let L and M be integers such that L>0 and
M= — 1. Let Q<= R" be an open connected set with diam Q = r.
(a) A smooth function a(x) is called an 1;-atom centered in Q if

supp a c% o

sup [D*a(y)|<1, |o<L.
yeR"

(b) A smooth function a(x) is called an (s,p), ,-atom centered in Q if

suppach,

SO
sup [D*a(y)|<r "7, |ul<L,
yERIZ

s+M+14+% A 0 (h
/,1“(y)</>(y)dy’<r+ Tl MO, peC(RY),

where 1/p+1/p' = 1.
Remark 2. If M = —1, then the moment condition in part (b) becomes superfluous.

Among others in [26] the authors constructed a regular sequence of coverings with
certain special properties which we now recall. Consider the shells (balls if k = 0)

Pip={xeR" K27 |x|<(k+1)27}, j=0,1,..., k=0,1,... .

Then there is a sequence {QF}") = {{Qf% ,}; /}Z, of coverings of R” such that
(a) all Qﬁk,/’ are balls with centres y; . satisfying

ol 279 (k+1/2) if k>0,
AR ) if k=0

(b) Pj,kC U?(r{’k) ka‘/, ] = 0, 1, ]

_ ceey

(©) diam Q% , =12-27;

(d) the sums > .7, /C:(’{k> Zjks(x) are uniformly bounded in xeR" and j=
0,1, ... (here ;. denotes the characteristic function of Qﬁk’ )

© QF , ={xeR" 2YxeQf, ,}, j=0,1,..;
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(0 Cn, )<k +1)"", Cn,0)=1.
(g) With an appropriate enumeration it holds

{(x1,0,...,0): x; =0} < U ka’l
k=0

and
{(x1,0,...,0): x;eR}nQ kl|~2 E

Here |- | denotes the Lebesgue measure in R. For & = 0 it makes sense to write
Qf, | = QF,. This abbreviation has been used in [26] but we do not use it here.
Property (g) is not stated explicitly in [26] but it follows immediately from the
construction described there.

We collect some properties of these decompositions in connection with Besov
spaces. To do so we introduce a further sequence space: we put

L) = {s = (5100)00 sl g (20| < 0},

where
o0 o0 C(n,k) q/p l/q
HAGIEESS (Z > |Sj,k,/|p> (5)
=0 \k=0 /=1
(usual modification if p or/and g = o).
(i) Each feB, (R") can be decomposed into
o0 o0 C I’L, )
f= Z Z Z Siks@iks (convergence in &' (R")), (6)

J=0 k=0 /=1

where the a;/ are (s,p); ),-atoms with respect to ka_/ (j=1), and the agx/
are 1-atoms with respect to ng_/.

(i) Any formal series » ") >, Z/C:('ik) Sjks djks converges in & (R") and its
limit belongs to By (R") if the sequence s = (s;k/);;, belongs to /,(/y).
Further, there exists a universal constant such that

C(n,k)

o0 e}
Z Z Z Sjksiks| By o (R")
J= =0 /=

holds for all sequences s = (/)4 /-
(i) The infimum of the left-hand side in (7) with respect to all admissible
representations (6) yields an equivalent norm on B;’q([R{”).

<cllsly(Z)Il (7)
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(iv) In [26] we gave an explicit construction of an atomic decomposition

satisfying
0 C(n,k) q/p 14
> < > ISj,k.,/I”) <c||f|B, ,(R")]] (8)
J=0 \k=0 /=1

for some constant ¢ independent of f. Such a decomposition we shall call
optimal.

(v) If f belongs to the subspace RB, (R") consisting of radial distributions in
B'f,‘q(R"), then one may arrive at an optimal decomposition (see the previous
item) such that sj., = s;1, £ = 1,2, ..., C(n, k), cf. [26].

Based on this decomposition we construct now atomic decompositions of some
weighted Besov spaces. The weights we are interested in are

wa(x) = (1 + |x[})*?, xeR", aeR. 9)

For the definition of B, (R", w,) we refer to Schmeier and Triebel [23, Chapter 5].
Of great service for us will be the fact that f+ fi, yields an isomorphism of
B, ,(R",w,) onto B; (R"). This has been proved by Franke [10], but see also [23,
Theorem 5.1.3]. Consequently, any feB‘;,’q([R?", w,) admits an atomic decomposition
of the form

o0 o0 C(n,k)
=0

fivg = > Skt

=0 k=0 /=1

such that (7) and (8) are satisfied with fw, instead of f. Dividing by w, we obtain a
decomposition like

o0 C(n,k)

f :Z Z Z Sikbjkss

)
j=0 k=0 (=1

where the building blocks b, , have to satisfy certain inequalities. It is an exercise
that the correct choice is the following.

Definition 2. Let acR. Let {Q]R}jﬁo be as above. Suppose 1<p< oo and s>0.
Denote by L a nonnegative integer.
(a) A smooth function b(x) is called a weighted (1,a),-atom centered in
o, if
supp b= 6Q¢ ,,
sup [D7b(y)[<w_u(k), |7|<L.
yER"
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(b) A smooth function b(x) is called a weighted (s, p, o), -atom centered in ka, ,if
suppb<6 - (2_-/)9;?,(:/,

sup [D'b(y)|<w_(27k) (6-(27) ", <L
yeR”

The atoms defined above depend on the scale and on the place. These new features
are, of course, undesirable. However, the above definition is justified by the following
proposition.

Proposition 1. Let aeR. Let {Q/R}/.Oio the particular decomposition described above.

Suppose 1 <p< oo, s>0, and denote by L a natural number satisfying L>s.
(i) Each f e B, (R",w,) can be decomposed into

0 C(n.k)
=0

= Z Z Z Sikebjks  (convergence in &' (R")), (10)

j k=0 /=1

where the b; i, are weighted (s, p, o) -atoms with respect to Qﬁk?/ (7=1) and the b s
are weighted (1, o), -atoms with respect to ng_’/.

(i1) If the sequence s = (sjAk,/)j’k/ belongs lo/q(/:), then the formal series on the
right-hand side of (10) converges in &' (R") and

o0 o0 C(Il,k) q/p l/q
< z( 3" ||) )
=0 \ k=0 /=1

holds with a constant ¢ independent of the sequence s = (sjx); ,. Moreover, the

infimum with respect to all admissible representations yields an equivalent norm in
B, (R",w,).

Proof. One only needs to check, that the quotient a;i,/w, yields a weighted
(s,p, o) -atom and vice versa, that the product wybj, yields an (s,p), ;-atom
(=1). O

Remark 3. In [24] Schott gave a different atomic decomposition for B;’q([R{”,w“).
There the atoms are defined as in the unweighted case and the sequence spaces are
modified. Of course, one can switch from his decomposition to our one and vice
versa (simply by a renormalization of the atoms).
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2.3. Traces of spaces of radial functions

To attack the estimate from below we follow a simple philosophy: all information
about a radial function is contained in its trace onto the positive half line (at least if
the function is sufficiently regular). The rest of this subsection will be used to make
this observation rigorous. We define

tr :f(x1,x2, ..., xy) =f (51,0, ...,0)
and
tr* s f(x1, X2, ..., x0) = £(2,0,...,0), |x1| =t

Here we restrict ourselves to a study of tr and tr* in the framework of %'(R). To
begin we recall the classical statement about traces of Besov spaces, cf. e.g. [,
Chapter 5]; [20, Appendix]; [28, 2.7].
n—1

Suppose 1 <p,g< oo and s> (n — 1)/p. Then tr maps B, ,(R") onto B‘,Y,_yq ?(R).

If we restrict the consideration to the subspaces RB,,  (R"), then the situation is not
improved in general. There are simple examples to explain this. Let y € Cy° (R") be a
radial function such that y(x) =1 if |x|<1 and y(x) =0 if |x|>2. Then, if
§>0,0#2k, keNjy we have

£0) = YT € By . (RY) <5< o

cf. e.g. [23, 2.3.1]. If we compare the n-dimensional case with the situation forn =1,
then it becomes obvious that the loss in the regularity by taking the trace is as in the
general case. Investigating such examples as above makes it clear that the origin is in
a certain sense a singular point. For us it will be sufficient to investigate the trace out
of the origin. In this case the local regularity of a radial function f eRB}‘;A’q(R") is
much higher than that one of an arbitrary element of B, ,(R"). This phenomenon has
been observed earlier in [18] in the framework of Sobolev spaces and in [26] for
Besov spaces themselves. To make clear what we mean by out of the origin we shall
use the following notions.

Definition 3. Let 0<t< oo, 1<p,g< o0, and s,aeR.
(i) Then we put

By (R w1, 0)) = {f € B, (R",w,): suppf<{xeR" |x|>1}}.
(i1) We define
REB (R, [1, ) = {f € R, ,(R"): supp/<{xeR": |x|>1}}
and similarly

RB, (R".[0,1]) = {feRB, (R"): suppf<={xeR" [x[<t}}.
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(iii) In the one-dimensional situation we introduce
B (Rayw,, [1,00)) = {f€ B}, (R,w,): supp /<[, o0)}.
All types of spaces will be equipped with the natural norm.

Some technicalities. As usual, tr and tr* are well defined for continuous functions.
The extension to general functions is then done by a continuity argument along an
estimate like

[tes 1 Bl| < cllf]4]

valid for all sufficiently smooth functions f' € A and for some constant ¢ independent
of f. This works well as long as smooth functions are dense. In our case this is true
for g< 0. If ¢ = oo we make use of the so-called Fatou property. Letf;, j=1,2, ...
be a sequence of functions, which has a limit /" in " and satisfies ||f;|B; || <C < 0.
Then the limit itself belongs to B),  and satisfies

If1B,,/|<cCliminf ||f;| B, ||

for some constant ¢ independent of f and f;.
First we investigate the situation out of the origin which is in fact also the more
interesting one. For this we shall need the following lemma.

Lemma 1. Let 0<t, i< o0, 1<p,g< o0 and s>0. Let aeR.

(i) The mapping f+f (%) yields an isomorphism of B (R",w,,[t, 00)) onto
B;_’q([R%”, Wy, [t/ 2, 00)).

(i) The mapping ff(2-) yields an isomorphism of B (R, wa, [t, 00)) onto
By (Ry,wy, [t/ 2, 00)).
Proof. The claim follows from well-known estimates of the dilation operator in the
unweighted situation, cf. e.g. [28, 3.4.1], the quoted isomorphism between weighted

and unweighted spaces and the fact that w,(1x)/w,(x) is a pointwise multiplier for
B[S]A’q(R”), cf. e.g. [22, 4.7]. We sketch a proof. Starting point is the following

equivalent quasi-norm in B, (R") (M >s>0):

B, (R = L.(R d 1/q
171 é,q( N = 1171 p( n)||+(/[|/1|_s|A%ﬂ[ﬁ(@n””q h};) .
Hence

1/ (218, ,(R)[[*

N . dnh\'1
— I |f|L (R + 2 ”/p( /Wll 14371 Lp (R ] |h")
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and

AP min(1,20)|[f 1By, (R")|[* < |l (4)|By,,(R)][*
< A7 max(1, 2)||f| B (R")|*.

Further, in the weighted situation we find

*

Wa(-)
(A)

I B BN = | 73 22 13 )

wy(+)
c ™ )|B ( (A )wy (A

S Callf (2)wa(2-)| B, (W)II*,

where ¢;, is a finite constant independent of f* (for the assertion on pointwise
multipliers, cf. e.g. [22, 4.7.1]). The desired result follows from the estimates in the
unweighted case and in addition from the same chain of inequalities with w, replaced
by w_,. O

o (RO

Theorem 2. Suppose n=2,0<t< oo, 1<p,g< 00, and s>0.

(i) The  operator — tr*  maps  RB, (R",[t,0))  continuously  onto
B;’q(R+7lv(’171)7 [Z, OO))
P
(i) There is a linear and continuous extension operator ext which maps

By (Ry, w1, [t, 00)) into RB,), ,(R",[t, c0)) and such that tr* o ext = id.
p
iil) The operator tr™* is an isomorphism.
(ii1) P P

Proof. We shall proof part (i) of the theorem for =1 only. The assertion for
general 0<7< oo follows from Lemma 1.

Step 1. Preparations. Let feRB;Yq([RE”) be given by an optimal atomic
decomposition

0 o  C(nk)
F=Y30 0 Siktks, (12)
=0 k=0 /=1

cf. Section 2.2/(iv),(v), and [26] where we have taken s;x = 5j41. In addition we
assume supp f ={xeR": |x|>1}. Because of s>0 the distribution f is regular and
the atoms in the above expansion do not need to satisfy a moment condition. Of
course, we want to use the additional restriction with respect to the support to derive
further information on the coefficients. But we do not have such a localization from
the very beginning. So we proceed as follows. Let e C° (R") be a radial cut-off
function satisfying ¥(x) =1 if |x|<1 and ¥(x) =0 if |x|>2. Then (1) is a
pointwise multiplier for all spaces B, ([R{”) and all 1>0, cf. e.g. [28, 2.8] or [22, 4.7.1].
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Hence

8
a
Q
=
o
=
&2
=
=
-
|
<
=
)
o
N—
SN—
S
b
~
~—~
N~—

The functions
s (x) =272 (1 = Y(2x)) k()

are (s,p); _-atoms (j=>1). Similar @, are 1,-atoms. In view of Section 2.2/(ii) and
(f) this implies

alp\ M
o0

1718y, (ROl <e| > > (1+ )" syl - (13)

J=0 \ k>max(0,2-1-12)

Step 2: Now, we investigate the trace, assuming that our starting point (12) was an
optimal atomic decomposition. To have a well-defined expression for the trace we
switch to a partial sum SX7 of the atomic decomposition and ask for the existence of
the limit tr(SXf) in ¥(R). For KeN we put

K Cnk)

NS Z > > Sikdicy.

J=0 k=max(0,2-1-12) /=1

This is a continuous function. For fixed j and k the number of atoms d; ; , which are
not identically zero on the x;-axis is limited by, say M. This number is independent
of j and k. Counting these atoms in an appropriate way we arrive at

tr(S5f) (e Z

> sk s(1,0,...,0) |, teR. (14)
k=max(0,2-1-12)

K K
j=0
The functions

l=n .

biks(t) = (L+k) P dys(1,0,...,0), k>max(0,27" —12)

are weighted (s,p, (n — 1)/p), -atoms with respect to the intersections of QRkl with
the xj-axis, cf. property (g) of ( ]k/)j rc- Here we really need the restriction
k>max(0,2~! — 12). Similarly the functions

1-n
b(),k,/(l) = (1 —|—k) P 67071{,/(170, ...,0), k=0,1,...
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are weighted (1, (n — 1)/p), -atoms with respect to the intersections of Q(Ifkj with the
xj-axis. By means of Proposition 1 we obtain
[tr(SEF)1 B (R wiu-1))
P
X X alp\ 1

<c| Y > (146" [sjul” : (15)

J=0 \ k=max(0,2-1-12)

where ¢ does not depend on K and the sequence {s;x}; . Since we started with an
optimal decomposition of /', the right-hand side is dominated by ¢||f|B, ,(R")]|. This
proves the continuity of tr : RB) (R",[l, 0))— B, (R, W, 1),,). To switch from tr
to tr* it is sufficient to note that for a function ge B, (R, w,) with suppg<[l, o)
and f its even extension we have

F1B,, 4 (R, wa )l ~ (191 By, 4 (R, w )|

This proves part (i) in the case t = 1 up to the claimed surjectivity which will be
established in Steps 4 and 5.

Step 3. The extension operator. Let us turn back to the adapted atomic
decomposition mentioned in the previous subsection. There is an associated
sequence of decompositions of unity. An explicit construction has been given in
[26], Step 3 of the proof of Theorems 1 and 2. We shall denote these decompositions
of unity as there by ¥, ,, which means

w  C(nk)

Z Z Yiks(x) =1 forall xeR", j=0,1,..,

k=0 /=1
supp ;. , is concentrated near kaj and [supp ¢; ;. /|~ |Qﬁk‘/|. The second tool we
need is the wavelet decomposition with respect to the Daubechies wavelets of
sufficiently high order, cf. [2] or [19]. We suppose that the “father” wavelet ¢ belongs
to C"(R) and is compactly supported, cf. [19, Section 3.8]. The associated wavelet v
shares these properties. The orthonormal basis consists of the functions ¢(- — k),
22y (2(-) — k), keZ and j = 0,1, .... Let C, be the smallest positive integer such
that the supports of the “mother” and “father”” wavelets are contained in [—C,, C,].
We suppose r>s. Theorem 4 in [2], more precisely its version for inhomogeneous
spaces, implies that any function g from B}‘;,q([R{, w,) can be represented in a unique
way by the wavelet expansion

gOwa(t) =D coamdlt—m)+> > 2P (2t —m) (16)
meZ j=0 mez
and
/p . a/p\ 4
< > ICl,mI”> +H Y ( > ch.,ml”) ~lg|B,, 4 (R, wy)][. (17)
meZ Jj=0 meZ
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Of course,
C_1m = <g(y)wot(y)a ¢(y - m) >a

11

207 e = CgOIwa(0), 292y = m)>.
We shall assume geB) (R,w( 1)) and suppg<=[C,, o0). Then our extension
P

operator is defined as follows:

extgl) = 3 eyt

m=1 ’ ( + | ‘ )(n !
) 0 i
/p—s) _ W(Zlx[—m)
+ ¢; 2/ (1/P=5) ) (18)
,Z; mz@;:)gﬂ s (1+ |x‘2)(n71)/(2[')

The function ext g can be rewritten as

ext g(x)
0 C(n,k)
b (x| - N
- C-1m (n— l /(2p) Z Z l//Ok/ )
m=1 ( + | ‘ =0 /=
o0 o0 w  C(nk)
~ ~j(1/p—s) Y (2|x| —m)
+Z Z ¢m2 I (1 + |xP) D/ Z Z Viges(X)
Jj=0 m=(2/-1)C,+1 k=0 =1

7
o C(n,k)
= Z C_1m ( N |(|x|) = 1)(2[,) Z Z '/jo,k,f(x))
/=

X
=
=
N
S~—

Observe

St V(2| = MM)
(1 + [/

are (s,p), _,-atoms with respect to ka/ up to an universal constant. Further, the
functions

k| <2, j>1

- o= ,S Y(Y|x| —m) ]k/( x)
2 p(+k)p2’ (1 )V

k|>2, j=1
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are (s,p), _,-atoms with respect to ka, , up to an universal constant. Finally, observe

— P(|x] — m)g s, (x)

(1+4) (1+ |x‘2)(n*1)/(2P)

are 1y-atoms with respect to Qéﬁk,/ (again up to a constant). In view of (7) and
C(n, k)~ (14 k)"" we obtain

alp\ 4

o0

lext g|By, (R <c| > > lgml

=1\ m=2-1C

This proves the continuity of ext as a mapping from B, (R, w(,_1)p, [C;, 00)) into
RB, (R").

Step 4: Suppose 1> C,. The identity tr* o ext = id holds for all C*-functions f
having compact support. Here we assume supp f <[z, c0). This can be derived from
the observation that for functions feB;,q([F&)7 s>1/p, the expansion (16) converges
in the uniform norm. Now a continuity argument with respect to tr* and with respect
to ext yields the statement, whenever C° is dense, so if g< 0. In case g = o0 we

may employ a similar argument. Thanks to B;}m([R)%B;/? IZ(R) we arrive at

tr* oext = id on B;/ 12([Ri) But this is enough to guarantee the same conclusion on
B, . (R).

Step 5: To prove that tr* is an isomorphism we need to show that tr* / = 0 implies
f =0 in the sense of ¥'(R"). Suppose feRB; (R",[C;, o)) and tr*f = 0. Then
there exists a sequence of smooth functions f; with compact support such that
suppfic{xeR": |x|>C,} and lim,;, f; =f in the sense of B;/lz(R”) From the

boundedness of tr* we obtain tr* f;j >0 if j— oo in the norm of B]S/ IZ(R) Moreover,
ext o tr* f; = f; by similar reasonings as in Step 4. Now

s/2 n
[[(ext o tr*)f B (R < cl[tr* 1 B) , (R)|

which proves lim;_, . f; = 0 (in any case in the sense of ¥'(R")). O

Remark 4. We make a few remarks to the situation around the origin. Suppose n>2,
0<t<oo,1<p,g< o0, and s>(n— 1)/p. Then the operator tr maps RB,  (R",[0,7])
a1
continuously into B‘,Y,.q ? (R, [0,1]). That is part of the classical theory of Besov spaces
n—1

on R”. But the space B;;T([R, [0,7]) is too large to be the image of RB, ,(R",[0,1])
under the mapping tr. That can be made clear by observing that for a function
S€RB, (R" [¢,1]) we always have trf€B, (R), cf. Theorem 2.

Remark 5. The above approach for investigating the trace extends to spaces with p
and ¢ less than 1. In the unweighted situation this has been done in e.g. [11], [15], and
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[28, 2.7]. For a complete treatment of all borderline cases see also [9]. In particular,
Proposition 1, Lemma 1 and Theorem 2 remain true under the natural restriction
s>nmax(0,, — 1).

3. Entropy numbers of embeddings of weighted sequence spaces

In the previous section we reduced the function space problem to a sequence space
problem, and in this section we estimate the entropy numbers of the relevant
sequence space embeddings. The kth (dyadic) entropy number of a bounded linear
operator 7: X — Y between two Banach spaces is defined as

k=1
ex(T) = inf{8>01 I, .., yua €Y, T(By)< U (y, + SBy)},
=

where By and By stand for the closed unit balls in X and Y, respectively. For basic
properties of entropy numbers and more background we refer to the literature, see
e.g. [4,16,21] or [7]. In particular these properties imply that for every pair of Banach
spaces X and Y the classes

LOX,Y)={T: X>Y|(ex(T)) €lup}, 0<u<oo, 0<v< 0

of operators with entropy numbers in the Lorentz sequence space /,, are quasi-
Banach spaces with respect to the quasi-norm

LENT) = (e T))l wall.

In the sequel, we shall exploit the well-known fact that every quasi-norm is
equivalent to an r-norm for some r, 0 <r<1.

For our purposes it is enough to consider complex spaces with 1 <p,g<oo,0>0
and 6>=0, like

o0

1/p
Lo, = § (500 ||s|fp.m||=<Z<1+k>“|sk|”> <o
k=0
and
1@ ) = { (10 11531042 L)

1/q

o) °e) ’1/17
(S marmsr)’) <
j=0 k=0

Now we state the main result of this section.

Theorem 3. Let 1<py<p; < o0, 1<qy,q1< 0, a>0,0>0, and set
B=(o+1)(1/po — 1/p1).
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Then there are positive constants ¢ and C such that for all ke N the estimates
ck P <er(id 420 pyri,) =Ly (Cpy i) < Ck P
hold.

Proof. Step 1: Upper estimate: Let wus consider the projections
P; il (Y%l po ) > Lpow, onto the jth vector coordinate, the formal identity
I:/pw,~pw and the embedding operators E;:Zp v, =4 ({p w,), mapping
yel,, v, onto the vector sequence (0, ...,»,0,...), y being the jth coordinate.

We use the obvious estimates

IP1<27, |IElI<1

and the standard decomposition
s}
id =Y "id;, where id; = E;IP;.
j=0

For the identity I we have the following commutative diagram:

D,
Lpo e, — Lp,
VoI | D,
D,

'eplawa A €P1
Here Dy, D,, D, denote the diagonal operators generated by the sequences p; =
(14 k)P g = (1 + k)~/P=Vr) and v = (1 + k)7, respectively,

(Dex); = 01X

Clearly, both D, and D, are isometries. For D, we use the following result due to
Carl [3]:

Let 1<pg,p1< o0, 0<t,u< oo, 0<v< oo such that 1/¢>1/p; — 1/pp and 1/u =
1/t+1/po — 1/p;. Then

0 = (0k),€lry implies (ex(Dgs:lpy—p))i EL up-

In our special case we have 1/t = a(1/py —1/p1), v =00 and 1/u = («+ 1)(1/po —
1/p1) = B, therefore

L) (D,) = sup kPer(Dy) < 0.
k

U, o0

Taking into account all previous estimates, the multiplicativity of the entropy
numbers yields

ec(id) <2 kP
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with a constant ¢ independent of j and k, or, in other words,

LY, (id;) = sup Klex(id)) <27
k

Since LE,"’L is equivalent to an r-norm for some r, 0<r<1, we arrive at

(id) <cZLe (id)) <c221‘3’<oo

j=0

uw

which proves the upper estimate.
Step 2: Lower estimate: For any given keN we consider the following
commutative diagram:

E};O — gl]o (2j6€p0,’wa )
L id L id

by, — A (lpw,)

Here the operators S and 7 are defined by
Eiiior ifj=0and k<I<2k—1,
(éh"'vék): -k
0 else
and
T((s0);1) = (Soks -+ 50,2%—1)-

Using Schiitt’s result concerning the entropy numbers for embeddings between the
finite-dimensional spaces /ﬁl —see [25], and again the multiplicativity of the entropy

numbers we get, with some constant ¢ independent of k,

i
ck l’o TS < ¢ (id :/k —>/k)

< [|S]lex(id : /qo(zléfpo,n )= L o DIT]-
Together with the obvious relations
1S]/< (k)™ and || T]|<(k+ 1)

this implies the lower estimate. [

4. Entropy numbers of id : RB) (R")—RB) (R")

Most of the work is done. A combination of the results obtained in Sections 2 and
3 with a few further known properties of the entropy numbers will prove our main
result.
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Theorem 4. Suppose 1 <py<p1< oo, 1<qo,q1 <0, and so — 51 — n(- —-1)>0. Let

Po D1
1 1
=i 1)
0 D1

Then there exist constants ¢ and C such that
ck P <er(id :RBY , (R")—RB) (R")<Ck™’
holds for all k>1.

Proof. Step 1: Suppose s;>0.

Substep 1.1: The estimates from above follow from Corollary 1, Theorem 3, the
multiplicativity property of the entropy numbers and some obvious monotonicity
arguments.

Substep 1.2: The estimate from below will follow from Theorem 2 and the known
estimates from below in case of the weighted spaces. To explain this argument
observe that the following diagram

B Ry, wen,[1,00) =% RB . (R"[1,00))
PO

Po,do 0,90
idl lid
t *
Bl Ri,ween;[L,o)) &= RBj (R [1,00))

is commutative, since the operator tr* is independent of s and p. Next we employ
Franke’s observation about the mapping f'+— w,f, cf. [10], [23, 5.1.3] or [7, 4.2.2].

Suppose o = (n — 1)(1%0 — pll) Then the mapping f'+—w (,_)f yields an isomorphism
2l
of B;Tq([R%w“,[l, o0)) onto B;_’q([R%w@,l),[l, o)) and of ij,q(Rﬂ[l7 o)) onto

Do
By (R, w1y, (1, 00)) simultaneously (without restrictions on s,p and ¢). Hence

P1
ex(id 1 By (R wy, [1,00)) > B (R4, [1,0)))
gcek(ld ZB;%_qO(R+,I4)(,171), [17 OO))HB;IN][ (R+a W(,,,]), [17 OO)))
Po D1
Note that

5:(so—i)—<s1—i)>(n—l)<pi—l>:oc and po<pi.
Po P 0 /1

This means, for spaces defined on R we are in region III, cf. [14, Theorem 4.2] or [7,
Theorem 4.3.2]. The known estimate from below is then given by

1 1
kP =k " < e (id By (Rywy) =By (R)). (19)

In view of this inequality it will be sufficient for us to prove that the entropy

numbers of the embeddings B (R, wy[l,0))< B (R, [1,00)) and of
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By (R,wy) < Byl (R) are asymptotically the same. But this is almost obvious.

The argument looks as follows. We take ,,,eC*(R) such that
supp ¥, =(—00,1/2], suppy,<=[—1/2,0) and ,+y¥,=1. Then we put
V. fyf,i=1,2,and n: (f1,/2) —f1 + /> . Then the following diagram

1\ 1\
Bz (R, wa) 102 B (R, wg, (—00,1]) ® B . (R, wq, [—1,00))
a [ia
BISJi,lh (R) (L B;: q1 (R ( 00, ]) BZ: ,q1 (R’ [_17 OO))

is commutative. Defining id; : (f1,/2) > (f1,0) and id; : (f1,/2)— (0, f2) we have id =
id; + id;. Thus by (19) and the commutativity of the last diagram we get

Ck P <en(id) < ex(idy) + ex(idy)

< 2e(id By (Ri wy, [1,00)) > By (R4, [1, 0)).

This finishes the proof in case s; positive.
Step 2: To avoid the restriction on s; we shall employ the properties of the

operator (id — 4)". Let reR. Let # and # ! denote the Fourier transform and its
inverse, respectively, both defined on %/ (R"). As it is well-known the mapping

Lif 71+ [P P7f(9)]

yields an isomorphism of B, ,(R") onto B, /(R"), cf. e.g. [28, 2.3.8]. Since I, respects
radial symmetry the same happens in case of the radial subspaces. Thanks to the
multiplicativity property of the entropy numbers this allows to extend our estimates
obtained in Step 1 to the general situation of arbitrary s. [

There is a further scale of distribution spaces quite often investigated parallel to
the Besov spaces: the Lizorkin-Triebel spaces F, , cf. e.g. [12] or [28,29]. Again
RF;ﬁq(R”) denotes the subspace of radial distributions. These classes generalize the

scale of Sobolev spaces and of Bessel potential spaces. As an immediate consequence
of the preceding theorem and of the relations

By min(p.g) (R") S F, ,(R") &

7, R,

p max(p,q) (

valid without restrictions concerning the parameters s,p,q and n one obtains the
following result.

Theorem 5. Suppose 1<py<p< o0, 1<q,q1< 0, and sy — s —n(———)>0 Let

Po
ﬁzn(ﬁi—i).
0o Pl
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Then there exist constants ¢ and C such that
-p i . —p
ck P <er(id : RFY (R")—>RF} (R")<Ck"
holds for all k>=1.

By using the flexibility in the third parameter ¢ one easily derives further results.

Corollary 2. Let 1<py<pi< 0, 1<qo< 0, and s0>n(pl0—pll). Let

ﬁzn(ﬁi—i).
0o P

Then there exist constants ¢ and C such that

ck’<e(id : RBY , (R")— Ly, (R")) < Ck 7,

ckP<er(id : RF®  (R")— L, (R"))<Ck ™"

Po,490

holds for all k>=1.

Remark 6. Thanks to W °(R") = F,(R") mg=s0eN,1<py<oco the above

corollary includes the determination of the asymptotic behavior of
1

1 1
ex(id 1 RWI(R")i> Ly, (R)) ~k "0 5

too.

Let bmo(R") be the space of functions of local bounded mean oscillations and let
cmo(R") be the closure of Cj°(R") in bmo(R").

Corollary 3. Let 1<p<oco,1<gq< o and s>n/p. Let 4, (R") be either B, ,(R") or
Fy (R"). Let X be either C(R"), L (R"),bmo(R") or cmo(R"). Then there exist
constants ¢ and C such that

ck P <ex(id : RAS (R") > X) < Ck 7
holds for all k>=1.

Proof. The proof follows from the continuous embeddings

B° 1(R") & cmo(R") & bmo(R") L»Bpoom (R™),

O,

0
Bcc,l

(R") < C(R") & Lo (R") < BY,  (R")

and Theorems 5 and 6, respectively. [
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