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Abstract

Let RBs
p;qðRnÞ be the radial subspace of the Besov space Bs

p;qðRnÞ: We prove the

independence of the asymptotic behavior of the entropy numbers

ekðid :RBs0
p0;q0

ðRnÞ/RBs1
p1;q1

ðRnÞÞ

from the difference s0 � s1 as long as the embedding itself RBs0
p0;q0

ðRnÞ+RBs1
p1;q1

ðRnÞ is

compact. In fact, we shall show that

ekðid :RBs0
p0;q0

ðRnÞ/RBs1
p1;q1

ðRnÞÞBk
�nð 1

p0
� 1

p1
Þ
:

This is in a certain contrast to earlier results on entropy numbers in the context of Besov

spaces Bs
p;qðOÞ on bounded domains O:
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1. Introduction

The aim of the paper is to investigate the quality of compact embeddings between
the radial subspaces of Besov and Triebel–Lizorkin spaces on the Euclidean n-space
Rn: We do not have in mind specific applications but rather want to direct the
attention to a new phenomenon. Let Bs

p;qðOÞ be the Besov space defined on the

bounded domain O in Rn: Then the embedding

Bs0
p0;q0

ðOÞ+Bs1
p1;q1

ðOÞ ðs1os0; p0op1Þ

is compact if and only if d ¼ s0 � s1 � ðn=p0 � n=p1Þ40: One can measure the
quality of embeddings in terms of the asymptotic behavior of the corresponding
entropy numbers. In this situation it is known that

ekðid : Bs0
p0;q0

ðOÞ/Bs1
p1;q1

ðOÞÞBk�s0�s1
n ;

cf. [7] (here aBb indicates a two-sided estimate). The parameters p0 and p1 disappear
on the right-hand side, only the difference s0 � s1 matters. In case of the radial
subspaces RBs

p;qðRnÞ of the Besov spaces Bs
p;qðRnÞ we meet the converse situation.

Again the embedding

RBs0
p0;q0

ðRnÞ+RBs1
p1;q1

ðRnÞ

is compact if and only if d40: But now the entropy numbers behave completely
different. We shall prove

ekðid : RBs0
p0;q0

ðRnÞ/RBs1
p1;q1

ðRnÞÞBk
�nð 1

p0
� 1

p1
Þ
:

Here the influence of s0 and s1 disappears and only the difference in 1=p0 and 1=p1
counts.
Symmetry as well as weights can be used to generate compactness of embeddings

on Rn: That has been known since the seventies, cf. e.g. [6,18] in case of first-order
Sobolev spaces. In the general framework of Besov and Triebel–Lizorkin spaces a
detailed account has been made in our previous paper [26].
The asymptotic behavior of entropy numbers of Sobolev embeddings is known in

some situations, in particular for

* spaces on bounded domains;
* weighted spaces on Rn (partial results).

As we shall see later entropy numbers of Sobolev embeddings of weighted spaces on
Rn are closely related to our problem here. Roughly speaking, we split the radial
subspace of the Besov space into two parts. One part, denoted by RBs

p;qðRn; ½1;NÞÞ;
contains radial distributions which have support in the set fx: jxjX1g and the other
part, denoted by RBs

p;qðRn; ½0; 2	Þ consists of radial distributions having support in

T. K .uhn et al. / Journal of Approximation Theory 121 (2003) 244–268 245



fx: jxjp2g: For a radial distribution f all information is contained in its trace trn f

on Rþ: This phrase can be made rigorous if the distribution is sufficiently regular.

Let waðxÞ ¼ ð1þ jxj2Þa=2; aAR: It turns out that the mapping trn becomes an
isomorphism of

RBs
p;qðRn; ½1;NÞÞ onto Bs

p;qðRþ;wðn�1Þ
p

; ½1;NÞÞ;

where the latter space is a weighted Besov space defined on Rþ; cf. Section 2.3 for
further details.
Now, consider the pair RBs0

p0;q0
ðRnÞ and RBs1

p1;q1
ðRnÞ; where p0op1 and s0 �

s1Xnð1=p0 � 1=p1Þ: In order to establish the estimates from below we employ the
above remarks and reduce them to the study of the estimates from below with
respect to the pair

Bs0
p0;q0

ðRþ;wðn�1Þ
p0

; ½1;NÞÞ and Bs1
p1;q1

ðRþ;wðn�1Þ
p1

; ½1;NÞÞ:

To prove the upper estimates, we will use a further tool-the radial j-transform of
Epperson and Frazier. This transform will allow us to reduce the upper estimate for
the entropy numbers to upper estimates of entropy numbers of certain sequence
spaces in a very convenient way. Estimates of entropy numbers of the associated
sequence spaces will be the main subject in Section 3. In the final section we prove
our main result announced above and formulate also a parallel result for the
Lizorkin–Triebel scale.
The described situation with p0op1 and s0 � s1Xnð1=p0 � 1=p1Þ is very similar to

that in the weighted case on the interval ½1;NÞ: Assuming the dominance of the
behavior near infinity over the behavior around the origin, our result could have
been deduced from the two-sided estimate

ekðid : Bs0
p0;q0

ðRþ;wðn�1Þ
p0

; ½1;NÞÞ/Bs1
p1;q1

ðRþ;wðn�1Þ
p1

; ½1;NÞÞBk
�nð 1

p0
� 1

p1
Þ
:

However, restricted to the situation of interest here, the upper estimate in this
asymptotic relation is still open [13, Conjecture 2.5], cf. also [14, Theorem 4.2] or [7,
Theorem 4.3.2], and we could not use it for an alternative approach.

2. Relations between sequence and function spaces

Our main aim consists in a characterization of the asymptotic behavior of the
entropy numbers of the Sobolev embeddings. For the corresponding estimates the
following tools are essential:

(a) the entropy numbers of embeddings of certain weighted sequence spaces;
(b) some identifications between function spaces and sequence spaces.

The described method is standard in that field and employed in many places, cf. e.g.
the monographs [7,29] or most recently the papers [5,17]. Here we will work with the
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following weighted sequence spaces:

cqð2jdcp;waÞ ¼ ðsj;kÞj;k: jjsj;kjcqð2jdcp;waÞjj
n

¼
XN
j¼0

XN
k¼0

2jdpð1þ kÞajsj;kjp
 !q=p

0
@

1
A

1=q

oN

9>=
>;; ð1Þ

where a40 is a real number, dX0 and 1pp; qpN (with the usual modification if
p ¼ N or q ¼ N). If d ¼ 0 we will write cqðcp;waÞ: We postpone the estimates of the

entropy numbers for the weighted sequence spaces to Section 3 and start with a
description of some mappings which connect the function spaces and the sequence
spaces.

2.1. The radial j-transform

We recall the Epperson–Frazier construction of the radial j-transform, cf. [8]. We
will do this in some detail because we are going to use it with a different
normalization.

Let j; cASðRnÞ be radial functions such that supp #j; #cCfx: 1
4
ojxjo1g;

j #jðxÞj; j #cðxÞjXc40 if 3
10
pjxjp5

6
: Let F;CASðRnÞ be radial functions satisfying

supp #F; #CCfx: jxjo1g; j #FðxÞj; j #CðxÞjXc40 if jxjp5
6
: We may assume that the

above functions satisfy the following identity:

#FðxÞ #CðxÞ þ
XN
j¼1

#jð2�jxÞ #cð2�jxÞ ¼ 1 for all xARn;

cf. [8]. We put jjðxÞ ¼ 2jnjð2jxÞ and cjðxÞ ¼ 2jncð2jxÞ; j ¼ 1; 2;y: Let dst denote

the usual surface measure on the sphere of radius t (not normalized) and let on�1
denote the measure of the unit sphere. Then we have

R
dst ¼ on�1t

n�1: Let Jn denote

the Bessel function of order n: As the definition we take

JnðxÞ ¼

ðx=2Þnffiffiffi
p

p
Gðnþ 1

2
Þ
R 1
�1ð1� t2Þn�1=2eixt dt if n4� 1

2
;

2

px

� �1=2

cos x if n ¼ �1
2
:

8>>><
>>>:

Let mn;1omn;2o? be the positive zeros of Jn: For k ¼ 1; 2;y we put

jðs;pÞ
j;k ðxÞ ¼ 2

jðsþn
2
�n

p
Þ
k
1�n
2

� 2jðn�2Þþ1

mn
n;kJ2

nþ1ðmn;kÞon�1

 !1=2

ðjj *ds2�jmn;kÞðxÞ; j ¼ 1; 2; 3;y;
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cðs;pÞ
j;k ðxÞ ¼ 2

�jðsþn
2
�n

p
Þ
k

n�1
2

� 2jðn�2Þþ1

mn
n;kJ2

nþ1ðmn;kÞon�1

 !1=2

ðcj *ds2�jmn;kÞðxÞ; j ¼ 1; 2; 3;y;

jðs;pÞ
0;k ðxÞ ¼ k

1�n
2

2

mn
n;kJ2

nþ1ðmn;kÞon�1

 !1=2

ðF*dsmn;kÞðxÞ;

cðs;pÞ
0;k ðxÞ ¼ k

n�1
2

2

mn
n;kJ2

nþ1ðmn;kÞon�1

 !1=2

ðC*dsmn;kÞðxÞ:

Observe, if the differential dimensions s0 � n
p0

and s1 � n
p1

coincide then jðs0;p0Þ
j;k ¼

jðs1;p1Þ
j;k and similar for c:

Agreement: From now on we fix n by n ¼ n�2
2

and drop the influence of n in

notations (as we already did in case of jðs;pÞ
j;k and cðs;pÞ

j;k Þ:
The functions jðs;pÞ

j;k and cðs;pÞ
j;k are radial. Moreover, any radial fAS0ðRnÞ can be

decomposed into

f ¼
XN
j¼0

XN
k¼1

/f ;jðs;pÞ
j;k Scðs;pÞ

j;k

(convergence in S0ðRnÞ), cf. [8]. We will not give a definition of the Besov spaces
here. The reader who is not familiar with the standard properties is referred to
[11,20,28,29].

Theorem 1 (Epperson–Frazier). Let sAR and 1pp; qpN: The operators

Sðs;pÞ : RBs
p;qðRnÞ-cqðcp;n�1Þ

and

Tðs;pÞ : cqðcp;n�1Þ-RBs
p;qðRnÞ

defined by

Sðs;pÞðf Þ ¼ ð/f ;jðs;pÞ
j;kþ1SÞj;k; ð2Þ

Tðs;pÞððgj;kÞÞ ¼
XN
j¼0

XN
k¼0

gj;kc
ðs;pÞ
j;kþ1 ð3Þ

are bounded. Moreover, the operator T is a retraction, i.e. T 3 S ¼ id:

Proof. In [8] Epperson and Frazier worked with a different normalization. Put

*jj;k ¼ l0j;kj
ðs;pÞ
j;k ; l0j;k ¼ 2

�jðsþn
2
�n

p
Þ
k

n�1
2
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and

*cj;k ¼ l1j;kc
ðs;pÞ
j;k ; l1j;k ¼ 2

jðsþn
2
�n

p
Þ
k
1�n
2 :

Let Aj;k denote the annulus (a ball if k ¼ 0),

fxARn: 2�jmkpjxjp2�jmkþ1g; m0 ¼ 0:

The characteristic functions of these sets are denoted by XAj;k
: Following [8] we

introduce the following sequence spaces hs
p;q by means of the norm

jjðsj;kÞjhs
p;qjj ¼

XN
j¼0

XN
k¼0

2jsjsj;kjjAj;kþ1j�1=2XAj;kþ1 j LpðRnÞ
�����

�����
�����

�����
q !1=q

oN:

Then the operators

S̃ : RBs
p;qðRnÞ-hs

p;q and T̃ : hs
p;q-RBs

p;qðRnÞ

defined by

S̃ðf Þ ¼ ð/f ; *jj;kSÞj;kþ1;

T̃ððsj;kÞÞ ¼
XN
j¼0

XN
k¼0

sj;k
*cj;kþ1

are bounded. Moreover, the operator T̃ is a retraction, i.e. T̃ 3 S̃ ¼ id: Using

McMahon’s asymptotic expansion mk ¼ mn;k ¼ ðk þ n
2
� 1

4
Þpþ Oð1

k
Þ; cf. [30, pp. 505–

506] one derives that

jAj;kjB2�jn kn�1:

In consequence

XN
k¼0

2jsjsj;kjjAj;kþ1j�
1
2XAj;kþ1 jLpðRnÞ

�����
�����

�����
�����

B
XN
k¼0

2jpsjsj;kjpjAj;kþ1j1�
p
2

 !1=p

B
XN
k¼0

j2jðsþnð1
2
�1

p
ÞÞjsj;kjð1þ kÞð1�nÞ=2jpð1þ kÞn�1

 !1=p

B
XN
k¼0

jgj;kjpð1þ kÞn�1
 !1=p

:

The assertion of Theorem 1 follows from these equivalences. &
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Corollary 1. Let p0op1 and s0 � n
p0
Xs1 � n

p1
: Let d ¼ s0 � s1 þ nð 1

p1
� 1

p0
Þ and s̃ ¼

s1 þ nð 1
p0
� 1

p1
Þ: Then

Sðs̃;p0Þ ¼ Sðs1;p1Þ ¼ S; Tðs̃;p0Þ ¼ Tðs1;p1Þ ¼ T ð4Þ

and the following diagram is commutative:

Proof. The identities in (4) follow from the definition of the functions jðs;pÞ
j;k and cðs;pÞ

j;k

and the definition of the operators. So, for s0 ¼ s̃ the commutivity of the diagram
follows from Theorem 1 and Bs0

p0;q
ðRnÞ+Bs1

p1;q
ðRnÞ: Let s04s̃: For j40 we have

jðs0;p0Þ
j;k ¼ 2jdjðs̃;p0Þ

j;k and cðs0;p0Þ
j;k ¼ 2jdcðs̃;p0Þ

j;k :

Let fARBs0
p0;q

ðRnÞ: Then

Sðf Þ ¼ ð/f ;jðs̃;p0Þ
j;kþ1SÞj;k ¼ ð2�jd/f ;jðs0;p0Þ

j;kþ1 SÞ:

By Theorem 1, the operator S is a bounded operator from the space RBs0
p0;q

ðRnÞ into
cqðcp0;n�1Þ: Moreover, the operator

T : cqð2jdcp1;n�1Þ-RBs1
p1;q

ðRnÞ

defined by

Tððgj;kÞÞ ¼
XN
j¼0

XN
k¼0

gj;kc
ðs̃;p0Þ
j;kþ1 ¼

XN
j¼0

XN
k¼0

gj;kc
ðs1;p1Þ
j;kþ1

is a bounded retraction. So we get the above commutative diagram. &

Remark 1. Corollary 1 will be used to derive estimates of the entropy numbers from

above. Observe that the functions cðs;pÞ
j;k are not linearly independent. So different

sequences may lead to the same distribution in (2). That makes clear that Theorem 1
cannot be used for the estimates from below.

2.2. Atomic decomposition of weighted spaces

This subsection has a preparatory character. Consider the Lp-case, then it becomes

obvious that spaces of radial functions are related to weighted spaces defined on the
positive half-line. To prepare a similar statement for Besov spaces we investigate first
atomic decompositions for weighted Besov spaces.
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We recall the definition of an atom, cf. [11,27] or [29]. For an open set Q and r40
we put rQ ¼ fxARn: distðx;QÞorg: Observe that Q is always a subset of rQ

whatever r is.

Definition 1. Let sAR and let 1pppN: Let L and M be integers such that LX0 and
MX� 1: Let QCRn be an open connected set with diam Q ¼ r:

(a) A smooth function aðxÞ is called an 1L-atom centered in Q if

supp aC
r

2
Q;

sup
yARn

jDaaðyÞjp1; jajpL:

(b) A smooth function aðxÞ is called an ðs; pÞL;M-atom centered in Q if

supp aC
r

2
Q;

sup
yARn

jDaaðyÞjpr
s�jaj�n

p; jajpL;

Z
Rn

aðyÞjðyÞ dy

����
����pr

sþMþ1þn
p0 jjjjCMþ1ðrQÞjj; jACNðRnÞ;

where 1=p þ 1=p0 ¼ 1:

Remark 2. If M ¼ �1; then the moment condition in part (b) becomes superfluous.

Among others in [26] the authors constructed a regular sequence of coverings with
certain special properties which we now recall. Consider the shells (balls if k ¼ 0)

Pj;k ¼ fxARn: k2�jpjxjoðk þ 1Þ2�jg; j ¼ 0; 1;y; k ¼ 0; 1;y :

Then there is a sequence fOR
j g

N

j¼0 ¼ ffOR
j;k;cgk;cg

N

j¼0 of coverings of R
n such that

(a) all OR
j;k;c are balls with centres yj;k;c satisfying

jyj;k;cj ¼
2�jðk þ 1=2Þ if k40;

0 if k ¼ 0;

(

(b) Pj;kC
SCðn;kÞ

c¼1 OR
j;k;c; j ¼ 0; 1;y;

(c) diamOR
j;k;c ¼ 12 � 2�j;

(d) the sums
P

N

k¼0
PCðn;kÞ

c¼1 Xj;k;cðxÞ are uniformly bounded in xARn and j ¼
0; 1;y (here Xj;k;c denotes the characteristic function of OR

j;k;cÞ;
(e) OR

j;k;c ¼ fxARn: 2jxAOR
0;k;cg; j ¼ 0; 1;y;
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(f) Cðn; kÞpð2k þ 1Þn�1; Cðn; 0Þ ¼ 1:
(g) With an appropriate enumeration it holds

fðx1; 0;y; 0Þ: x1X0gC
[N
k¼0

OR
j;k;1

and

jfðx1; 0;y; 0Þ: x1ARg-OR
j;k;1jB2�j :

Here j � j denotes the Lebesgue measure in R: For k ¼ 0 it makes sense to write

OR
j;0;1 ¼ OR

j;0: This abbreviation has been used in [26] but we do not use it here.

Property (g) is not stated explicitly in [26] but it follows immediately from the
construction described there.
We collect some properties of these decompositions in connection with Besov

spaces. To do so we introduce a further sequence space: we put

cqðcnpÞ ¼ fs ¼ ðsj;k;cÞj;k;c: jjsjcqðcnpÞjjoNg;

where

jjsjcqðcnpÞjj ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
jsj;k;cjp

 !q=p
0
@

1
A

1=q

ð5Þ

(usual modification if p or/and q ¼ N).

(i) Each fABs
p;qðRnÞ can be decomposed into

f ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;k;caj;k;c ðconvergence in S0ðRnÞÞ; ð6Þ

where the aj;k;c are ðs; pÞL;M-atoms with respect to OR
j;k;c ðjX1Þ; and the a0;k;c

are 1L-atoms with respect to OR
0;k;c:

(ii) Any formal series
P

N

j¼0
P

N

k¼0
PCðn;kÞ

c¼1 sj;k;c aj;k;c converges in S0ðRnÞ and its

limit belongs to Bs
p;qðRnÞ if the sequence s ¼ ðsj;k;cÞj;k;c belongs to cqðcnpÞ:

Further, there exists a universal constant such that

XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;k;caj;k;cjBs

p;qðRnÞ
�����

�����
�����

�����pcjjsjcqðcnpÞjj ð7Þ

holds for all sequences s ¼ ðsj;k;cÞj;k;c:

(iii) The infimum of the left-hand side in (7) with respect to all admissible
representations (6) yields an equivalent norm on Bs

p;qðRnÞ:
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(iv) In [26] we gave an explicit construction of an atomic decomposition
satisfying

XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
jsj;k;cjp

 !q=p
0
@

1
A

1=q

pcjjf jBs
p;qðRnÞjj ð8Þ

for some constant c independent of f : Such a decomposition we shall call
optimal.

(v) If f belongs to the subspace RBs
p;qðRnÞ consisting of radial distributions in

Bs
p;qðRnÞ; then one may arrive at an optimal decomposition (see the previous

item) such that sj;k;c ¼ sj;k;1; c ¼ 1; 2;y;Cðn; kÞ; cf. [26].

Based on this decomposition we construct now atomic decompositions of some
weighted Besov spaces. The weights we are interested in are

waðxÞ ¼ ð1þ jxj2Þa=2; xARn; aAR: ð9Þ

For the definition of Bs
p;qðRn;waÞ we refer to SchmeiXer and Triebel [23, Chapter 5].

Of great service for us will be the fact that f/fwa yields an isomorphism of
Bs

p;qðRn;waÞ onto Bs
p;qðRnÞ: This has been proved by Franke [10], but see also [23,

Theorem 5.1.3]. Consequently, any fABs
p;qðRn;waÞ admits an atomic decomposition

of the form

fwa ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;k;caj;k;c

such that (7) and (8) are satisfied with fwa instead of f : Dividing by wa we obtain a
decomposition like

f ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;k;cbj;k;c;

where the building blocks bj;k;c have to satisfy certain inequalities. It is an exercise

that the correct choice is the following.

Definition 2. Let aAR: Let fOR
j g

N

j¼0 be as above. Suppose 1pppN and s40:

Denote by L a nonnegative integer.
(a) A smooth function bðxÞ is called a weighted ð1; aÞL-atom centered in

OR
0;k;c if

supp bC 6OR
0;k;c;

sup
yARn

jDgbðyÞjpw�aðkÞ; jgjpL:
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(b) A smooth function bðxÞ is called a weighted ðs; p; aÞL-atom centered in OR
j;k;c if

supp bC6 � ð2�jÞOR
j;k;c;

sup
yARn

jDgbðyÞjpw�að2�jkÞ ð6 � ð2�jÞÞs�jgj�n
p; jgjpL:

The atoms defined above depend on the scale and on the place. These new features
are, of course, undesirable. However, the above definition is justified by the following
proposition.

Proposition 1. Let aAR: Let fOR
j g

N

j¼0 the particular decomposition described above.

Suppose 1pppN; s40; and denote by L a natural number satisfying L4s:
(i) Each fABs

p;qðRn;waÞ can be decomposed into

f ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;k;cbj;k;c ðconvergence in S0ðRnÞÞ; ð10Þ

where the bj;k;c are weighted ðs; p; aÞL-atoms with respect to OR
j;k;c ðjX1Þ and the b0;k;c

are weighted ð1; aÞL-atoms with respect to OR
0;k;c:

(ii) If the sequence s ¼ ðsj;k;cÞj;k;c belongs tocqðcnpÞ; then the formal series on the

right-hand side of (10) converges in S0ðRnÞ and

XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;k;cbj;k;cjBs

p;qðRn;waÞ
�����

�����
�����

�����
pc

XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
jsj;k;cjp

 !q=p
0
@

1
A

1=q

ð11Þ

holds with a constant c independent of the sequence s ¼ ðsj;k;cÞj;k;c: Moreover, the

infimum with respect to all admissible representations yields an equivalent norm in

Bs
p;qðRn;waÞ:

Proof. One only needs to check, that the quotient aj;k;c=wa yields a weighted

ðs; p; aÞL-atom and vice versa, that the product wabj;k;c yields an ðs; pÞL;�1-atom

ðjX1Þ: &

Remark 3. In [24] Schott gave a different atomic decomposition for Bs
p;qðRn;waÞ:

There the atoms are defined as in the unweighted case and the sequence spaces are
modified. Of course, one can switch from his decomposition to our one and vice
versa (simply by a renormalization of the atoms).
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2.3. Traces of spaces of radial functions

To attack the estimate from below we follow a simple philosophy: all information
about a radial function is contained in its trace onto the positive half line (at least if
the function is sufficiently regular). The rest of this subsection will be used to make
this observation rigorous. We define

tr : f ðx1; x2;y; xnÞ-f ðx1; 0;y; 0Þ

and

trn : f ðx1; x2;y; xnÞ-f ðt; 0;y; 0Þ; jx1j ¼ t:

Here we restrict ourselves to a study of tr and trn in the framework of S0ðRÞ: To
begin we recall the classical statement about traces of Besov spaces, cf. e.g. [1,
Chapter 5]; [20, Appendix]; [28, 2.7].

Suppose 1pp; qpN and s4ðn � 1Þ=p: Then tr maps Bs
p;qðRnÞ onto B

s�n�1
p

p;q ðRÞ:
If we restrict the consideration to the subspaces RBs

p;qðRnÞ; then the situation is not
improved in general. There are simple examples to explain this. Let cACN

0 ðRnÞ be a
radial function such that cðxÞ ¼ 1 if jxjp1 and cðxÞ ¼ 0 if jxjX2: Then, if
s40; aa2k; kAN0 we have

faðxÞ ¼ cðxÞjxjaABs
p;NðRnÞ3sp

n

p
þ a;

cf. e.g. [23, 2.3.1]. If we compare the n-dimensional case with the situation for n ¼ 1;
then it becomes obvious that the loss in the regularity by taking the trace is as in the
general case. Investigating such examples as above makes it clear that the origin is in
a certain sense a singular point. For us it will be sufficient to investigate the trace out
of the origin. In this case the local regularity of a radial function fARBs

p;qðRnÞ is
much higher than that one of an arbitrary element of Bs

p;qðRnÞ: This phenomenon has
been observed earlier in [18] in the framework of Sobolev spaces and in [26] for
Besov spaces themselves. To make clear what we mean by out of the origin we shall
use the following notions.

Definition 3. Let 0otoN; 1pp; qpN; and s; aAR:
(i) Then we put

Bs
p;qðRn;wa; ½t;NÞÞ ¼ ffABs

p;qðRn;waÞ: supp fCfxARn: jxjXtgg:

(ii) We define

RBs
p;qðRn; ½t;NÞÞ ¼ ffARBs

p;qðRnÞ: supp fCfxARn: jxjXtgg

and similarly

RBs
p;qðRn; ½0; t	Þ ¼ ffARBs

p;qðRnÞ: supp fCfxARn: jxjptgg:
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(iii) In the one-dimensional situation we introduce

Bs
p;qðRþ;wa; ½t;NÞÞ ¼ f fABs

p;qðR;waÞ: supp fC½t;NÞg:

All types of spaces will be equipped with the natural norm.

Some technicalities. As usual, tr and trn are well defined for continuous functions.
The extension to general functions is then done by a continuity argument along an
estimate like

jjtr f jBjjpcjjf jAjj

valid for all sufficiently smooth functions fAA and for some constant c independent
of f : This works well as long as smooth functions are dense. In our case this is true
for qoN: If q ¼ N we make use of the so-called Fatou property. Let fj; j ¼ 1; 2;y

be a sequence of functions, which has a limit f in S0 and satisfies jjfjjBs
p;qjjpCoN:

Then the limit itself belongs to Bs
p;q and satisfies

jjf jBs
p;qjjpcC lim inf jjfjjBs

p;qjj

for some constant c independent of f and fj:

First we investigate the situation out of the origin which is in fact also the more
interesting one. For this we shall need the following lemma.

Lemma 1. Let 0ot; loN; 1pp; qpN and s40: Let aAR:
(i) The mapping f/f ðl�Þ yields an isomorphism of Bs

p;qðRn;wa; ½t;NÞÞ onto

Bs
p;qðRn;wa; ½t=l;NÞÞ:
(ii) The mapping f/f ðl�Þ yields an isomorphism of Bs

p;qðRþ;wa; ½t;NÞÞ onto

Bs
p;qðRþ;wa; ½t=l;NÞÞ:

Proof. The claim follows from well-known estimates of the dilation operator in the
unweighted situation, cf. e.g. [28, 3.4.1], the quoted isomorphism between weighted
and unweighted spaces and the fact that waðlxÞ=waðxÞ is a pointwise multiplier for
Bs

p;qðRnÞ; cf. e.g. [22, 4.7]. We sketch a proof. Starting point is the following

equivalent quasi-norm in Bs
p;qðRnÞ ðM4s40Þ:

jjf jBs
p;qðRnÞjjn ¼ jjf jLpðRnÞjj þ

Z
½jhj�sjjDM

h f jLpðRnÞjj	q dh

jhjn
� �1=q

:

Hence

jjf ðl�ÞjBs
p;qðRnÞjjn

¼ l�n=pjjf jLpðRnÞjj þ ls�n=p

Z
½jhj�sjjDM

h f jLpðRnÞjj	q dh

jhjn
� �1=q
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and

l�n=p minð1; lsÞjjf jBs
p;qðRnÞjjnp jjf ðl�ÞjBs

p;qðRnÞjjn

p l�n=p maxð1; lsÞjjf jBs
p;qðRnÞjjn:

Further, in the weighted situation we find

jjf ðl�ÞwajBs
p;qðRnÞjjn ¼ f ðl�Þwaðl�Þ

wað�Þ
waðl�Þ

jBs
p;qðRnÞ

����
����

����
����
n

p c
wað�Þ

waðl�Þ
jBs

N;qðRnÞ
����

����
����

����
n

jjf ðl�Þwaðl�ÞjBs
p;qðRnÞjjn

p cl;ajjf ðl�Þwaðl�ÞjBs
p;qðRnÞjjn;

where cl;a is a finite constant independent of f (for the assertion on pointwise

multipliers, cf. e.g. [22, 4.7.1]). The desired result follows from the estimates in the
unweighted case and in addition from the same chain of inequalities with wa replaced
by w�a: &

Theorem 2. Suppose nX2; 0otoN; 1pp; qpN; and s40:

(i) The operator trn maps RBs
p;qðRn; ½t;NÞÞ continuously onto

Bs
p;qðRþ;wðn�1Þ

p

; ½t;NÞÞ:

(ii) There is a linear and continuous extension operator ext which maps

Bs
p;qðRþ;wðn�1Þ

p

; ½t;NÞÞ into RBs
p;qðRn; ½t;NÞÞ and such that trn 3 ext ¼ id:

(iii) The operator trn is an isomorphism.

Proof. We shall proof part (i) of the theorem for t ¼ 1 only. The assertion for
general 0otoN follows from Lemma 1.

Step 1: Preparations. Let fARBs
p;qðRnÞ be given by an optimal atomic

decomposition

f ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;kaj;k;c; ð12Þ

cf. Section 2.2/(iv),(v), and [26] where we have taken sj;k ¼ sj;k;1: In addition we

assume supp fCfxARn: jxjX1g: Because of s40 the distribution f is regular and
the atoms in the above expansion do not need to satisfy a moment condition. Of
course, we want to use the additional restriction with respect to the support to derive
further information on the coefficients. But we do not have such a localization from
the very beginning. So we proceed as follows. Let cACN

0 ðRnÞ be a radial cut-off

function satisfying cðxÞ ¼ 1 if jxjp1 and cðxÞ ¼ 0 if jxjX2: Then cðl�Þ is a
pointwise multiplier for all spaces Bs

p;qðRnÞ and all l40; cf. e.g. [28, 2.8] or [22, 4.7.1].
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Hence

f ðxÞ ¼ ð1� cð2xÞÞf ðxÞ ¼
XN
j¼0

XN
k¼0

XCðn;kÞ

c¼1
sj;kð1� cð2xÞÞaj;k;cðxÞ

¼
XN
j¼0

X
kXmaxð0;2j�1�12Þ

XCðn;kÞ

c¼1
sj;kð1� cð2xÞÞaj;k;cðxÞ:

The functions

ãj;k;cðxÞ ¼ 2�2Lð1� cð2xÞÞaj;k;cðxÞ

are ðs; pÞL;�1-atoms ðjX1Þ: Similar ã0;k;c are 1L-atoms. In view of Section 2.2/(ii) and

(f) this implies

jjf jBs
p;qðRnÞjjpc

XN
j¼0

X
kXmaxð0;2j�1�12Þ

ð1þ kÞn�1jsj;kjp
0
@

1
A

q=p
0
B@

1
CA

1=q

: ð13Þ

Step 2: Now, we investigate the trace, assuming that our starting point (12) was an
optimal atomic decomposition. To have a well-defined expression for the trace we

switch to a partial sum SK f of the atomic decomposition and ask for the existence of

the limit trðSK f Þ in S0ðRÞ: For KAN we put

SK f ¼
XK

j¼0

XK

k¼maxð0;2j�1�12Þ

XCðn;kÞ

c¼1
sj;kãj;k;c:

This is a continuous function. For fixed j and k the number of atoms ãj;k;c which are

not identically zero on the x1-axis is limited by, say M: This number is independent
of j and k: Counting these atoms in an appropriate way we arrive at

trðSK f ÞðtÞ ¼
XM
c¼1

XK

j¼0

XK

k¼maxð0;2j�1�12Þ
sj;kãj;k;cðt; 0;y; 0Þ

0
@

1
A; tAR: ð14Þ

The functions

bj;k;cðtÞ ¼ ð1þ kÞ
1�n

p ãj;k;cðt; 0;y; 0Þ; kXmaxð0; 2j�1 � 12Þ

are weighted ðs; p; ðn � 1Þ=pÞL-atoms with respect to the intersections of OR
j;k;1 with

the x1-axis, cf. property (g) of ðOR
j;k;cÞj;k;c: Here we really need the restriction

kXmaxð0; 2j�1 � 12Þ: Similarly the functions

b0;k;cðtÞ ¼ ð1þ kÞ
1�n

p ã0;k;cðt; 0;y; 0Þ; k ¼ 0; 1;y
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are weighted ð1; ðn � 1Þ=pÞL-atoms with respect to the intersections of O
R
0;k;c with the

x1-axis. By means of Proposition 1 we obtain

jjtrðSK f ÞjBs
p;qðR;wðn�1Þ

p

Þjj

pc
XK

j¼0

XK

k¼maxð0;2j�1�12Þ
ð1þ kÞn�1jsj;kjp

0
@

1
A

q=p
0
B@

1
CA

1=q

; ð15Þ

where c does not depend on K and the sequence fsj;kgj;k: Since we started with an

optimal decomposition of f ; the right-hand side is dominated by cjjf jBs
p;qðRnÞjj: This

proves the continuity of tr :RBs
p;qðRn; ½1;NÞÞ/Bs

p;qðR;wðn�1Þ=pÞ: To switch from tr

to trn it is sufficient to note that for a function gABs
p;qðR;waÞ with supp gC½1;NÞ

and f its even extension we have

jjf jBs
p;qðR;waÞjjBjjgjBs

p;qðR;waÞjj:

This proves part (i) in the case t ¼ 1 up to the claimed surjectivity which will be
established in Steps 4 and 5.

Step 3: The extension operator. Let us turn back to the adapted atomic
decomposition mentioned in the previous subsection. There is an associated
sequence of decompositions of unity. An explicit construction has been given in
[26], Step 3 of the proof of Theorems 1 and 2. We shall denote these decompositions
of unity as there by cj;k;c; which means

XN
k¼0

XCðn;kÞ

c¼1
cj;k;cðxÞ ¼ 1 for all xARn; j ¼ 0; 1;y;

supp cj;k;c is concentrated near OR
j;k;c and jsupp cj;k;cjBjOR

j;k;cj: The second tool we

need is the wavelet decomposition with respect to the Daubechies wavelets of
sufficiently high order, cf. [2] or [19]. We suppose that the ‘‘father’’ wavelet f belongs
to CrðRÞ and is compactly supported, cf. [19, Section 3.8]. The associated wavelet c
shares these properties. The orthonormal basis consists of the functions fð� � kÞ;
2j=2cð2jð�Þ � kÞ; kAZ and j ¼ 0; 1;y: Let Cr be the smallest positive integer such
that the supports of the ‘‘mother’’ and ‘‘father’’ wavelets are contained in ½�Cr;Cr	:
We suppose r4s: Theorem 4 in [2], more precisely its version for inhomogeneous
spaces, implies that any function g from Bs

p;qðR;waÞ can be represented in a unique

way by the wavelet expansion

gðtÞwaðtÞ ¼
X
mAZ

c�1;mfðt � mÞ þ
XN
j¼0

X
mAZ

cj;m2
jð1=p�sÞcð2j t � mÞ ð16Þ

and

X
mAZ

jc�1;mjp
 !1=p

þ
XN
j¼0

X
mAZ

jcj;mjp
 !q=p

0
@

1
A

1=q

BjjgjBs
p;qðR;waÞjj: ð17Þ
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Of course,

c�1;m ¼/gðyÞwaðyÞ;fðy � mÞS;

2
jð1

p
�1
2
�sÞ

cj;m ¼/gðyÞwaðyÞ; 2j=2cð2jy � mÞS:

We shall assume gABs
p;qðR;wðn�1Þ

p

Þ and supp gC½Cr;NÞ: Then our extension

operator is defined as follows:

ext gðxÞ ¼
XN
m¼1

c�1;m
fðjxj � mÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ

þ
XN
j¼0

XN
m¼ð2j�1ÞCrþ1

cj;m2
jð1=p�sÞ cð2jjxj � mÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ: ð18Þ

The function ext g can be rewritten as

ext gðxÞ

¼
XN
m¼1

c�1;m
fðjxj � mÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ

XN
k¼0

XCðn;kÞ

c¼1
c0;k;cðxÞ

 !

þ
XN
j¼0

XN
m¼ð2j�1ÞCrþ1

cj;m2
jð1=p�sÞ cð2jjxj � mÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ

XN
k¼0

XCðn;kÞ

c¼1
cj;k;cðxÞ

 !

¼
XN
m¼1

c�1;m
fðjxj � mÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ

X
jk�mjpCrþ12

XCðn;kÞ

c¼1
c0;k;cðxÞ

0
@

1
A

þ
XN
j¼0

XN
m¼ð2j�1ÞCrþ1

cj;m2
jð1=p�sÞ cð2jjxj � mÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ

�
X

jk�mjpCrþ12

XCðn;kÞ

c¼1
cj;k;cðxÞ

0
@

1
A:

Observe

2
jðn

p
�sÞ cð2jjxj � mÞcj;k;cðxÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ ; jkjp2j; jX1

are ðs; pÞL;�1-atoms with respect to OR
j;k;c up to an universal constant. Further, the

functions

2
�j

n�1
p ð1þ kÞ

n�1
p 2

jðn
p
�sÞ cð2j jxj � mÞcj;k;cðxÞ

ð1þ jxj2Þðn�1Þ=ð2pÞ ; jkj42j; jX1
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are ðs; pÞL;�1-atoms with respect to OR
j;k;c up to an universal constant. Finally, observe

ð1þ kÞ
n�1

p
fðjxj � mÞc0;k;cðxÞ
ð1þ jxj2Þðn�1Þ=ð2pÞ

are 1L-atoms with respect to OR
0;k;c (again up to a constant). In view of (7) and

Cðn; kÞBð1þ kÞn�1 we obtain

jjext gjBs
p;qðRnÞjjpc

XN
j¼�1

X
mXð2j�1ÞCr

jcj;mjp
0
@

1
A

q=p
0
B@

1
CA

1=q

:

This proves the continuity of ext as a mapping from Bs
p;qðRþ;wðn�1Þ=p; ½Cr;NÞÞ into

RBs
p;qðRnÞ:

Step 4: Suppose t4Cr: The identity trn 3 ext ¼ id holds for all CN-functions f

having compact support. Here we assume supp fC½t;NÞ: This can be derived from
the observation that for functions fABs

p;qðRÞ; s41=p; the expansion (16) converges

in the uniform norm. Now a continuity argument with respect to trn and with respect
to ext yields the statement, whenever CN

0 is dense, so if qoN: In case q ¼ N we

may employ a similar argument. Thanks to Bs
p;NðRÞ+B

s=2
p;1 ðRÞ we arrive at

trn 3 ext ¼ id on B
s=2
p;1 ðRÞ: But this is enough to guarantee the same conclusion on

Bs
p;NðRÞ:
Step 5: To prove that trn is an isomorphism we need to show that trn f ¼ 0 implies

f ¼ 0 in the sense of S0ðRnÞ: Suppose fARBs
p;qðRn; ½Cr;NÞÞ and trn f ¼ 0: Then

there exists a sequence of smooth functions fj with compact support such that

supp fjCfxARn: jxjXCrg and limj-N fj ¼ f in the sense of B
s=2
p;1 ðRnÞ: From the

boundedness of trn we obtain trn fj-0 if j-N in the norm of B
s=2
p;1 ðRÞ: Moreover,

ext 3 trn fj ¼ fj by similar reasonings as in Step 4. Now

jjðext 3 trnÞfj jBs=2
p;1 ðRnÞjjpcjjtrn fjjBs

p;qðRÞjj

which proves limj-N fj ¼ 0 (in any case in the sense of S0ðRnÞ). &

Remark 4. We make a few remarks to the situation around the origin. Suppose nX2;
0otoN; 1pp; qpN; and s4ðn � 1Þ=p: Then the operator tr maps RBs

p;qðRn; ½0; t	Þ

continuously into B
s�n�1

p
p;q ðR; ½0; t	Þ: That is part of the classical theory of Besov spaces

on Rn: But the space B
s�n�1

p
p;q ðR; ½0; t	Þ is too large to be the image of RBs

p;qðRn; ½0; t	Þ
under the mapping tr: That can be made clear by observing that for a function
fARBs

p;qðRn; ½e; t	Þ we always have tr fABs
p;qðRÞ; cf. Theorem 2.

Remark 5. The above approach for investigating the trace extends to spaces with p

and q less than 1. In the unweighted situation this has been done in e.g. [11], [15], and
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[28, 2.7]. For a complete treatment of all borderline cases see also [9]. In particular,
Proposition 1, Lemma 1 and Theorem 2 remain true under the natural restriction

s4nmaxð0; 1
p
� 1Þ:

3. Entropy numbers of embeddings of weighted sequence spaces

In the previous section we reduced the function space problem to a sequence space
problem, and in this section we estimate the entropy numbers of the relevant
sequence space embeddings. The kth (dyadic) entropy number of a bounded linear
operator T : X-Y between two Banach spaces is defined as

ekðTÞ ¼ inf e40: (y1;y; y2k�1AY ;TðBX ÞD
[2k�1

j¼1
ðyj þ eBY Þ

( )
;

where BX and BY stand for the closed unit balls in X and Y ; respectively. For basic
properties of entropy numbers and more background we refer to the literature, see
e.g. [4,16,21] or [7]. In particular these properties imply that for every pair of Banach
spaces X and Y the classes

LðeÞ
u;vðX ;Y Þ ¼ fT : X-Y jðekðTÞÞkAcu;vg; 0ouoN; 0ovpN

of operators with entropy numbers in the Lorentz sequence space cu;v are quasi-

Banach spaces with respect to the quasi-norm

LðeÞ
u;vðTÞ ¼ jjðekðTÞÞkjcu;vjj:

In the sequel, we shall exploit the well-known fact that every quasi-norm is
equivalent to an r-norm for some r; 0orp1:
For our purposes it is enough to consider complex spaces with 1pp; qpN; a40

and dX0; like

cp;wa ¼ ðskÞk: jjsjcp;wa jj ¼
XN
k¼0

ð1þ kÞajskjp
 !1=p

oN

8<
:

9=
;

and

cqð2jdcp;waÞ ¼ ðsj;kÞj;k: jjsj;kjcqð2jdcp;waÞjj
n

¼
XN
j¼0

XN
k¼0

2jdpð1þ kÞajsj;kjp
 !q=p

0
@

1
A

1=q

oN

9>=
>;:

Now we state the main result of this section.

Theorem 3. Let 1pp0op1pN; 1pq0; q1pN; a40; d40; and set

b ¼ ðaþ 1Þð1=p0 � 1=p1Þ:
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Then there are positive constants c and C such that for all kAN the estimates

ck�bpekðid : cq0ð2jdcp0;waÞ-cq1ðcp1;waÞÞpCk�b

hold.

Proof. Step 1: Upper estimate: Let us consider the projections

Pj : cq0ð2jdcp0;waÞ-cp0;wa onto the jth vector coordinate, the formal identity

I : cp0;wa-cp1;wa and the embedding operators Ej : cp1;wa-cq1ðcp1;waÞ; mapping

yAcp1;wa onto the vector sequence ð0;y; y; 0;yÞ; y being the jth coordinate.

We use the obvious estimates

jjPjjjp2�jd; jjEj jjp1

and the standard decomposition

id ¼
XN
j¼0

idj ; where idj ¼ EjIPj:

For the identity I we have the following commutative diagram:

Here Dm;Ds;Dn denote the diagonal operators generated by the sequences mk ¼
ð1þ kÞa=p0 ; sk ¼ ð1þ kÞ�að1=p0�1=p1Þ and nk ¼ ð1þ kÞ�a=p1 ; respectively,

ðDsxÞl ¼ slxl :

Clearly, both Dm and Dn are isometries. For Ds we use the following result due to

Carl [3]:
Let 1pp0; p1pN; 0ot; uoN; 0ovpN such that 1=t41=p1 � 1=p0 and 1=u ¼

1=t þ 1=p0 � 1=p1: Then

s ¼ ðskÞkAct;v implies ðekðDs : cp0-cp1ÞÞkAcu;v:

In our special case we have 1=t ¼ að1=p0 � 1=p1Þ; v ¼ N and 1=u ¼ ðaþ 1Þð1=p0 �
1=p1Þ ¼ b; therefore

LðeÞ
u;NðDsÞ ¼ sup

k

kbekðDsÞoN:

Taking into account all previous estimates, the multiplicativity of the entropy
numbers yields

ekðidjÞpc2�jdk�b
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with a constant c independent of j and k; or, in other words,

LðeÞ
u;NðidjÞ ¼ sup

k

kbekðidjÞpc2�jd:

Since L
ðeÞ
u;N is equivalent to an r-norm for some r; 0orp1; we arrive at

LðeÞ
u;NðidÞrpc

XN
j¼0

LðeÞ
u;NðidjÞrpc

XN
j¼0

2�jdroN;

which proves the upper estimate.
Step 2: Lower estimate: For any given kAN we consider the following

commutative diagram:

Here the operators S and T are defined by

Sðx1;y; xkÞ ¼
xlþ1�k if j ¼ 0 and kplp2k � 1;

0 else

(

and

Tððsj;lÞj;lÞ ¼ ðs0;k;y; s0;2k�1Þ:

Using Schütt’s result concerning the entropy numbers for embeddings between the

finite-dimensional spaces cM
p —see [25], and again the multiplicativity of the entropy

numbers we get, with some constant c independent of k;

ck
�ð 1

p0
� 1

p1
Þp ekðid : ck

p0
-ck

p1
Þ

p jjSjjekðid : cq0ð2jdcp0;waÞ-cq1ðcp1;waÞÞjjT jj:
Together with the obvious relations

jjSjjpð2kÞa=p0 and jjT jjpðk þ 1Þ�a=p1

this implies the lower estimate. &

4. Entropy numbers of id : RBs0
p0;q0

ðRnÞ/RBs1
p1;q1

ðRnÞ

Most of the work is done. A combination of the results obtained in Sections 2 and
3 with a few further known properties of the entropy numbers will prove our main
result.
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Theorem 4. Suppose 1pp0op1pN; 1pq0; q1pN; and s0 � s1 � nð 1
p0
� 1

p1
Þ40: Let

b ¼ n
1

p0
� 1

p1

� �
:

Then there exist constants c and C such that

ck�bpekðid : RBs0
p0;q0

ðRnÞ/RBs1
p1;q1

ðRnÞÞpCk�b

holds for all kX1:

Proof. Step 1: Suppose s140:
Substep 1.1: The estimates from above follow from Corollary 1, Theorem 3, the

multiplicativity property of the entropy numbers and some obvious monotonicity
arguments.

Substep 1.2: The estimate from below will follow from Theorem 2 and the known
estimates from below in case of the weighted spaces. To explain this argument
observe that the following diagram

is commutative, since the operator trn is independent of s and p: Next we employ
Franke’s observation about the mapping f/waf ; cf. [10], [23, 5.1.3] or [7, 4.2.2].

Suppose a ¼ ðn � 1Þð 1
p0
� 1

p1
Þ: Then the mapping f/w

�ðn�1Þ
p1

f yields an isomorphism

of Bs
p;qðRþ;wa; ½1;NÞÞ onto Bs

p;qðRþ;wðn�1Þ
p0

; ½1;NÞÞ and of Bs
p;qðRþ; ½1;NÞÞ onto

Bs
p;qðRþ;wðn�1Þ

p1

; ½1;NÞÞ simultaneously (without restrictions on s; p and q). Hence

ekðid : Bs0
p0;q0

ðRþ;wa; ½1;NÞÞ/Bs1
p1;q1

ðRþ; ½1;NÞÞÞ

pCekðid : Bs0
p0;q0

ðRþ;wðn�1Þ
p0

; ½1;NÞÞ/Bs1
p1;q1

ðRþ;wðn�1Þ
p1

; ½1;NÞÞÞ:

Note that

d ¼ s0 �
1

p0

� �
� s1 �

1

p1

� �
4ðn � 1Þ 1

p0
� 1

p1

� �
¼ a and p0op1:

This means, for spaces defined on R we are in region III, cf. [14, Theorem 4.2] or [7,
Theorem 4.3.2]. The known estimate from below is then given by

k�b ¼ k
�aþ 1

p1
� 1

p0pcekðid :Bs0
p0;q0

ðR;waÞ/Bs1
p1;q1

ðRÞÞ: ð19Þ

In view of this inequality it will be sufficient for us to prove that the entropy
numbers of the embeddings Bs0

p0;q0
ðRþ;wa; ½1;NÞÞ+Bs1

p1;q1
ðRþ; ½1;NÞÞ and of
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Bs0
p0;q0

ðR;waÞ+Bs1
p1;q1

ðRÞ are asymptotically the same. But this is almost obvious.

The argument looks as follows. We take c1;c2ACNðRÞ such that
supp c1Cð�N; 1=2	; supp c2C½�1=2;NÞ and c1 þ c2 � 1: Then we put
Ci : f/cif ; i ¼ 1; 2; and p : ðf1; f2Þ/f1 þ f2 . Then the following diagram

is commutative. Defining id1 : ðf1; f2Þ/ðf1; 0Þ and id2 : ðf1; f2Þ/ð0; f2Þ we have id ¼
id1 þ id2: Thus by (19) and the commutativity of the last diagram we get

Ck�bpe2kðidÞp ekðid1Þ þ ekðid2Þ

p 2ekðid : Bs0
p0;q0

ðRþ;wa; ½1;NÞÞ/Bs1
p1;q1

ðRþ; ½1;NÞÞ:

This finishes the proof in case s1 positive.
Step 2: To avoid the restriction on s1 we shall employ the properties of the

operator ðid� DÞr: Let rAR: Let F and F�1 denote the Fourier transform and its

inverse, respectively, both defined on S0ðRnÞ: As it is well-known the mapping

Ir : f/F�1½ð1þ jxj2Þr=2Ff ðxÞ	

yields an isomorphism of Bs
p;qðRnÞ onto Bs�r

p;q ðRnÞ; cf. e.g. [28, 2.3.8]. Since Ir respects

radial symmetry the same happens in case of the radial subspaces. Thanks to the
multiplicativity property of the entropy numbers this allows to extend our estimates
obtained in Step 1 to the general situation of arbitrary s: &

There is a further scale of distribution spaces quite often investigated parallel to
the Besov spaces: the Lizorkin–Triebel spaces Fs

p;q; cf. e.g. [12] or [28,29]. Again

RFs
p;qðRnÞ denotes the subspace of radial distributions. These classes generalize the

scale of Sobolev spaces and of Bessel potential spaces. As an immediate consequence
of the preceding theorem and of the relations

Bs
p;minðp;qÞðRnÞ+Fs

p;qðRnÞ+Bs
p;maxðp;qÞðRnÞ;

valid without restrictions concerning the parameters s; p; q and n one obtains the
following result.

Theorem 5. Suppose 1pp0op1pN; 1pq0; q1pN; and s0 � s1 � nð 1
p0
� 1

p1
Þ40: Let

b ¼ n
1

p0
� 1

p1

� �
:
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Then there exist constants c and C such that

ck�bpekðid : RF s0
p0;q0

ðRnÞ/RF s1
p1;q1

ðRnÞÞpCk�b

holds for all kX1:

By using the flexibility in the third parameter q one easily derives further results.

Corollary 2. Let 1pp0op1pN; 1pq0pN; and s04nð 1
p0
� 1

p1
Þ: Let

b ¼ n
1

p0
� 1

p1

� �
:

Then there exist constants c and C such that

ck�bpekðid : RBs0
p0;q0

ðRnÞ/Lp1ðRnÞÞpCk�b;

ck�bpekðid : RF s0
p0;q0

ðRnÞ/Lp1ðRnÞÞpCk�b

holds for all kX1:

Remark 6. Thanks to W m0
p0

ðRnÞ ¼ Fs0
p0;2

ðRnÞ m0 ¼ s0AN; 1op0oN the above

corollary includes the determination of the asymptotic behavior of

ekðid : RW m0
p0

ðRnÞ/Lp1ðRnÞÞBk
�nð 1

p0
� 1

p1
Þ

too.

Let bmoðRnÞ be the space of functions of local bounded mean oscillations and let
cmoðRnÞ be the closure of CN

0 ðRnÞ in bmoðRnÞ:

Corollary 3. Let 1ppoN; 1pqpN and s4n=p: Let As
p;qðRnÞ be either Bs

p;qðRnÞ or

Fs
p;qðRnÞ: Let X be either CðRnÞ;LNðRnÞ; bmoðRnÞ or cmoðRnÞ: Then there exist

constants c and C such that

ck
�n

ppekðid :RAs
p;qðRnÞ/X ÞpCk

�n
p

holds for all kX1:

Proof. The proof follows from the continuous embeddings

B0
N;1ðRnÞ+cmoðRnÞ+bmoðRnÞ+B0

N;NðRnÞ;

B0
N;1ðRnÞ+CðRnÞ+LNðRnÞ+B0

N;NðRnÞ

and Theorems 5 and 6, respectively. &
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[17] H.-G. Leopold, Embeddings and entropy numbers in Besov Spaces of generalized smoothness, in: H.

Hudzik, L. Skrzypczak (Eds.), Function Spaces: The Fifth Conference, Lecture Notes in Pure and

Applied Mathematics, Vol. 213, Marcel Dekker Inc., New York, 2000, pp. 323–336.
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